19 research outputs found

    Automatic Discovery, Association Estimation and Learning of Semantic Attributes for a Thousand Categories

    Full text link
    Attribute-based recognition models, due to their impressive performance and their ability to generalize well on novel categories, have been widely adopted for many computer vision applications. However, usually both the attribute vocabulary and the class-attribute associations have to be provided manually by domain experts or large number of annotators. This is very costly and not necessarily optimal regarding recognition performance, and most importantly, it limits the applicability of attribute-based models to large scale data sets. To tackle this problem, we propose an end-to-end unsupervised attribute learning approach. We utilize online text corpora to automatically discover a salient and discriminative vocabulary that correlates well with the human concept of semantic attributes. Moreover, we propose a deep convolutional model to optimize class-attribute associations with a linguistic prior that accounts for noise and missing data in text. In a thorough evaluation on ImageNet, we demonstrate that our model is able to efficiently discover and learn semantic attributes at a large scale. Furthermore, we demonstrate that our model outperforms the state-of-the-art in zero-shot learning on three data sets: ImageNet, Animals with Attributes and aPascal/aYahoo. Finally, we enable attribute-based learning on ImageNet and will share the attributes and associations for future research.Comment: Accepted as a conference paper at CVPR 201

    Semantic Attributes for Transfer Learning in Visual Recognition

    Get PDF
    Angetrieben durch den Erfolg von Deep Learning Verfahren wurden in Bezug auf künstliche Intelligenz erhebliche Fortschritte im Bereich des Maschinenverstehens gemacht. Allerdings sind Tausende von manuell annotierten Trainingsdaten zwingend notwendig, um die Generalisierungsfähigkeit solcher Modelle sicherzustellen. Darüber hinaus muss das Modell jedes Mal komplett neu trainiert werden, sobald es auf eine neue Problemklasse angewandt werden muss. Dies führt wiederum dazu, dass der sehr kostenintensive Prozess des Sammelns und Annotierens von Trainingsdaten wiederholt werden muss, wodurch die Skalierbarkeit solcher Modelle erheblich begrenzt wird. Auf der anderen Seite bearbeiten wir Menschen neue Aufgaben nicht isoliert, sondern haben die bemerkenswerte Fähigkeit, auf bereits erworbenes Wissen bei der Lösung neuer Probleme zurückzugreifen. Diese Fähigkeit wird als Transfer-Learning bezeichnet. Sie ermöglicht es uns, schneller, besser und anhand nur sehr weniger Beispiele Neues zu lernen. Daher besteht ein großes Interesse, diese Fähigkeit durch Algorithmen nachzuahmen, insbesondere in Bereichen, in denen Trainingsdaten sehr knapp oder sogar nicht verfügbar sind. In dieser Arbeit untersuchen wir Transfer-Learning im Kontext von Computer Vision. Insbesondere untersuchen wir, wie visuelle Erkennung (z.B. Objekt- oder Aktionsklassifizierung) durchgeführt werden kann, wenn nur wenige oder keine Trainingsbeispiele existieren. Eine vielversprechende Lösung in dieser Richtung ist das Framework der semantischen Attribute. Dabei werden visuelle Kategorien in Form von Attributen wie Farbe, Muster und Form beschrieben. Diese Attribute können aus einer disjunkten Menge von Trainingsbeispielen gelernt werden. Da die Attribute eine doppelte, d.h. sowohl visuelle als auch semantische, Interpretation haben, kann Sprache effektiv genutzt werden, um den Übertragungsprozess zu steuern. Dies bedeutet, dass Modelle für eine neue visuelle Kategorie nur anhand der sprachlichen Beschreibung erstellt werden können, indem relevante Attribute selektiert und auf die neue Kategorie übertragen werden. Die Notwendigkeit von Trainingsbildern entfällt durch diesen Prozess jedoch vollständig. In dieser Arbeit stellen wir neue Lösungen vor, semantische Attribute zu modellieren, zu übertragen, automatisch mit visuellen Kategorien zu assoziieren, und aus sprachlichen Beschreibungen zu erkennen. Zu diesem Zweck beleuchten wir die attributbasierte Erkennung aus den folgenden vier Blickpunkten: 1) Anders als das gängige Modell, bei dem Attribute global gelernt werden müssen, stellen wir einen hierarchischen Ansatz vor, der es ermöglicht, die Attribute auf verschiedenen Abstraktionsebenen zu lernen. Wir zeigen zudem, wie die Struktur zwischen den Kategorien effektiv genutzt werden kann, um den Lern- und Transferprozess zu steuern und damit diskriminative Modelle für neue Kategorien zu erstellen. Mit einer gründlichen experimentellen Analyse demonstrieren wir eine deutliche Verbesserung unseres Modells gegenüber dem globalen Ansatz, insbesondere bei der Erkennung detailgenauer Kategorien. 2) In vorherrschend attributbasierten Transferansätzen überwacht der Benutzer die Zuordnung zwischen den Attributen und den Kategorien. Wir schlagen in dieser Arbeit vor, die Verbindung zwischen den beiden automatisch und ohne Benutzereingriff herzustellen. Unser Modell erfasst die semantischen Beziehungen, welche die Attribute mit Objekten koppeln, um ihre Assoziationen vorherzusagen und unüberwacht auszuwählen welche Attribute übertragen werden sollen. 3) Wir umgehen die Notwendigkeit eines vordefinierten Vokabulars von Attributen. Statt dessen schlagen wir vor, Enyzklopädie-Artikel zu verwenden, die Objektkategorien in einem freien Text beschreiben, um automatisch eine Menge von diskriminanten, salienten und vielfältigen Attributen zu entdecken. Diese Beseitigung des Bedarfs eines benutzerdefinierten Vokabulars ermöglicht es uns, das Potenzial attributbasierter Modelle im Kontext sehr großer Datenmengen vollends auszuschöpfen. 4) Wir präsentieren eine neuartige Anwendung semantischer Attribute in der realen Welt. Wir schlagen das erste Verfahren vor, welches automatisch Modestile lernt, und vorhersagt, wie sich ihre Beliebtheit in naher Zukunft entwickeln wird. Wir zeigen, dass semantische Attribute interpretierbare Modestile liefern und zu einer besseren Vorhersage der Beliebtheit von visuellen Stilen im Vergleich zu anderen Darstellungen führen

    SpotEM: Efficient Video Search for Episodic Memory

    Full text link
    The goal in episodic memory (EM) is to search a long egocentric video to answer a natural language query (e.g., "where did I leave my purse?"). Existing EM methods exhaustively extract expensive fixed-length clip features to look everywhere in the video for the answer, which is infeasible for long wearable-camera videos that span hours or even days. We propose SpotEM, an approach to achieve efficiency for a given EM method while maintaining good accuracy. SpotEM consists of three key ideas: 1) a novel clip selector that learns to identify promising video regions to search conditioned on the language query; 2) a set of low-cost semantic indexing features that capture the context of rooms, objects, and interactions that suggest where to look; and 3) distillation losses that address the optimization issues arising from end-to-end joint training of the clip selector and EM model. Our experiments on 200+ hours of video from the Ego4D EM Natural Language Queries benchmark and three different EM models demonstrate the effectiveness of our approach: computing only 10% - 25% of the clip features, we preserve 84% - 97% of the original EM model's accuracy. Project page: https://vision.cs.utexas.edu/projects/spotemComment: Published in ICML 202

    NaQ: Leveraging Narrations as Queries to Supervise Episodic Memory

    Full text link
    Searching long egocentric videos with natural language queries (NLQ) has compelling applications in augmented reality and robotics, where a fluid index into everything that a person (agent) has seen before could augment human memory and surface relevant information on demand. However, the structured nature of the learning problem (free-form text query inputs, localized video temporal window outputs) and its needle-in-a-haystack nature makes it both technically challenging and expensive to supervise. We introduce Narrations-as-Queries (NaQ), a data augmentation strategy that transforms standard video-text narrations into training data for a video query localization model. Validating our idea on the Ego4D benchmark, we find it has tremendous impact in practice. NaQ improves multiple top models by substantial margins (even doubling their accuracy), and yields the very best results to date on the Ego4D NLQ challenge, soundly outperforming all challenge winners in the CVPR and ECCV 2022 competitions and topping the current public leaderboard. Beyond achieving the state-of-the-art for NLQ, we also demonstrate unique properties of our approach such as the ability to perform zero-shot and few-shot NLQ, and improved performance on queries about long-tail object categories. Code and models: {\small\url{http://vision.cs.utexas.edu/projects/naq}}.Comment: 13 pages, 7 figures, appearing in CVPR 202

    Few-Shot Audio-Visual Learning of Environment Acoustics

    Full text link
    Room impulse response (RIR) functions capture how the surrounding physical environment transforms the sounds heard by a listener, with implications for various applications in AR, VR, and robotics. Whereas traditional methods to estimate RIRs assume dense geometry and/or sound measurements throughout the environment, we explore how to infer RIRs based on a sparse set of images and echoes observed in the space. Towards that goal, we introduce a transformer-based method that uses self-attention to build a rich acoustic context, then predicts RIRs of arbitrary query source-receiver locations through cross-attention. Additionally, we design a novel training objective that improves the match in the acoustic signature between the RIR predictions and the targets. In experiments using a state-of-the-art audio-visual simulator for 3D environments, we demonstrate that our method successfully generates arbitrary RIRs, outperforming state-of-the-art methods and -- in a major departure from traditional methods -- generalizing to novel environments in a few-shot manner. Project: http://vision.cs.utexas.edu/projects/fs_rir.Comment: Accepted to NeurIPS 202
    corecore